贴一篇代码,我们操作系统老师布置的作业,由单信号量,改为一个信号集中多信号量。水平有限,写的不好。
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include<sys/mman.h> //提供了共享内存的相关操作
#include<fcntl.h>
#include<sys/stat.h>
union semun {
int val;
struct semid_ds *buf;
unsigned short *array;
} arg;
//生成信号量
//信号量创建
//第一个:同步信号量,表示先后顺序,必须有空间才能生产
//第二个:同步信号量,表示先后顺序,必须有产品才能消费
//第三个:互斥信号量,生产者和每个消费者不能同时进入缓冲区
int sem_creat(key_t key)
{
union semun sem[3];
int semid;
sem[0].val = 5;//最多5个产品
sem[1].val=0;
sem[2].val=1;
semid = semget(key, 3, IPC_CREAT|0666);//三个信号量,空、满、进入缓冲区。
if (-1 == semid)
{
printf("create semaphore error\n");
exit(-1);
}
semctl(semid, 0, SETVAL, sem[0]);//初始信号量集中的第一个信号量
semctl(semid,1,SETVAL,sem[1]);//第二个
semctl(semid,2,SETVAL,sem[2]);//第三个
return semid;
}
//删除信号量
void del_sem(int semid)
{
union semun sem;
sem.val = 0;
semctl(semid, 0, IPC_RMID, sem);
semctl(semid, 1, IPC_RMID, sem);
semctl(semid, 2, IPC_RMID, sem);
}
//p操作
int p(int semid,int semIndex)
{
struct sembuf sops={semIndex, -1, SEM_UNDO};//这里的“semIndex”是信号量集里的信号量序号
return (semop(semid, &sops, 1));
}
//v操作
int v(int semid,int semIndex)
{
struct sembuf sops={semIndex, +1, SEM_UNDO};//这里的“semIndex”是信号量集里的信号量序号
return (semop(semid, &sops, 1));
}
int buffer;
int Num=5;
int *pData;
int value_read = 0, value_write = 0;
int full, empty,all;
int start=0,end=0;
void producer(key_t);
void consumer(int);
int main(void)
{
key_t keyFull, keyEmpty,key;
int fd;
pid_t pid;
void *ptr; //指向共享内存的指针
/* shm_open是一个POSIX函数,用来打开或创建一个与“/shm”关联的共享内存区 */
if((fd = shm_open("/shm", O_RDWR | O_CREAT, S_IRUSR | S_IWUSR)) == -1)//shmget(...)
{
printf("shm_open error\n"); /* 出错提示 */
}
if(ftruncate(fd, sizeof(int)*5) == -1) /* 截短共享内存的长度到我们所需要的长度 */
{
printf("ftruncate error\n");
}
if((ptr = mmap(0, sizeof(int)*5, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0)) == MAP_FAILED) /* 将共享内存映射到进程地址空间 */
{
printf("mmap error");
}
pData = (int *)ptr;
//keyFull = ftok("/", 0);
//keyEmpty = ftok("/", 1);
key=ftok("/", 0);
//full = sem_creat(keyFull, 0);
//empty = sem_creat(keyEmpty, 1);
all=sem_creat(key);
switch(pid = fork())
{
case -1: /* 生成子进程失败 */
break;
case 0: /* 子进程 */
//producer(keyFull, keyEmpty); /* 子进程是生产者 */
producer(key);
sleep(2);
break;
default:
//consumer(full, empty); /* 父进程是消费者 */
consumer(all);
break;
}
wait(0);
shm_unlink("/shm"); /* 删除共享内存区,程序中基本上保证了子进程先退出,因此父进程中无wait操作且这部操作放在父进程这里 */
//shmctl(shmid,IPC_RMID,&buf);
//del_sem(semid);
return 0;
}
/* 生产者写5次后退出 */
//void producer(key_t keyFull, key_t keyEmpty)
void producer(key_t key)
{
//full = semget(keyFull, 3, 0);
//empty = semget(keyEmpty, 3, 0);
all=semget(key,3,0);
while(value_write < 10) /* 退出条件判定 */
{
//printf("Prepare Write\n");
printf("准备写\n");
//printf("empty Write P1 : %d\n", semctl(empty, 0, GETVAL, 0));
p(all,0); //判断是否有空
p(all,2);//操作缓冲区
//printf("empty Write P2 : %d\n", semctl(empty, 0, GETVAL, 0));
value_write++;
*(pData+start%Num) = value_write;
//printf("Write : %5d\n", *(pData+start%Num));
printf("写 : %5d\n", *(pData+start%Num));
start++;
//printf("full Write V1 : %d\n", semctl(full, 0, GETVAL, 0));
v(all,2);//释放缓冲区
v(all,1); //通知消费者
//printf("full Write V2 : %d\n", semctl(full, 0, GETVAL, 0));
//printf("Write Finish\n");
printf("写结束\n");
//sleep(3);
}
}
/* 消费者读5次后退出 */
//void consumer(int full, int empty)
void consumer(int all)
{
while(value_read < 10) /* 退出条件判定 */
{
//printf(" Prepare Read\n");
printf("准备读\n");
//printf(" full Read P1 : %d\n", semctl(full, 0, GETVAL, 0));
p(all,1);//判断是否有产品
p(all,2); //操作缓冲区
//printf(" full Read P1 : %d\n", semctl(full, 0, GETVAL, 0));
//printf(" Read : %5d\n", *(pData+end%Num));
printf("读 : %5d\n", *(pData+end%Num));
//printf(" empty Read V1 : %d\n", semctl(empty, 0, GETVAL, 0));
//printf(" empty Read V1 : %d\n", semctl(empty, 0, GETVAL, 0));
//value_read ++;
//printf(" Read Finish\n");
printf("读结束\n");
if(*(pData+end%Num) == 10)
exit(0);
end++;
v(all,2);//释放缓冲区
v(all,0);//通知生产者
//sleep(1);
}
}
//gcc -lrt p.c (-o 目标文件名)
//./a.out
Linux进程间的同步方法的优缺点比较://m.ajphoenix.com/linux/11023.html
Linux下几种进程间通信详细分析://m.ajphoenix.com/linux/533.html